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In this Comment, we show that the expression for R0 as proposed by R. Breban, R. Vardavas, and S. Blower,
Phys. Rev. E 72, 046110 �2005� is incorrect and we reveal the underlying conceptual mistake.
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Using a Kinetic Monte Carlo �KMC� growing network,
Breban et al. �1� calculate an R0 value of 1 for a simple
birth-death model with growth rate � and death rate �, with
���. Their calculation is based on the formula

R0 = �
Q=0

�

QpQ��� �1�

with Q the number of offspring and pQ��� the fraction of
individuals with Q offspring when time approaches infinity.
However, R0 is an average based on sampling at birth, which
is not the same as sampling of the extant population. This
can easily be shown as follows. A newborn individual lives
for an expected amount of time 1/� while producing off-
spring at rate �, so has an expected number of offspring
� /�. The expected number of offspring at age x, given that
the individual is still alive, equals �x. The stable age distri-
bution has density,

�e−�x �2�

�the product of the survival probability e−�x and a factor
�e−��−��x which incorporates the effect that the growth of the
population has on the age distribution and guarantees that the
integral equals 1�. Therefore, the expected number of off-
spring per individual alive equals

�
0

�

�2xe−�x = �
0

�

dx�e−�x = 1. �3�

In fact this result is a reformulation of the Euler-Lotka equa-
tion which serves to characterize the population growth rate.

The reduction of � /� to 1 is due to the overrepresentation of
young individuals in a growing population.

The stable age distribution can be derived from the partial
differential equation for the density u�t ,x� of individuals of
age x at time t,

ut + ux = − �u �4�

as indeed Breban et al. do correctly in the Appendixes B and
C. So our comment concerns a conceptual matter, not the
technical elaboration. In the epidemic context, R0 is, by defi-
nition, an average over �a sample of� individuals that are just
infected and then followed during their infectious period to
count the number of transmissions they bring about. Alterna-
tively one may, in principle, take a snapshot in time and
count per infectious individual how many secondary cases
they have caused and then calculate the average. In a rising
epidemic the latter should equal 1 if the transient effects of
the precise way in which the outbreak was started up have
died out, but the reduction of the pool of susceptibles by
acquired immunity is not yet an issue.

Whenever a network does not have much structure, it can
be described by a branching process. The theory for these
processes is in very good shape, see, e.g., Ref. �2�. In fact
one can use this theory to investigate the likelihood of a
minor outbreak despite R0 being bigger than 1 �an issue that
is not addressed at all in Breban et al. �1�� and even, by
considering the backward process, the final size distribution,
see Sec. 10.5.2 of Ref. �3�.
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